Ronaldo Vigo

Associate Professor of Mathematical & Computational Cognitive Science

Contact Information:

Email: vigo(->AT<-)
211 Porter Hall
Ohio University
Athens, OH 45701

 Research Areas:

  • Mathematical Modeling
  • Computational Modeling
  • Cognitive Processes
  • Psychophysics

Research Interests

Although I am interested in many areas of cognitive research, my core work focuses on the formulation and development of mathematical and computational models of similarity assessment, attention, perception, concept learning, categorization, and choice behavior. For example, I have investigated the degree of difficulty that humans experience when learning different types of concepts. In addition, I have investigated the influence of structural context on the aforementioned capacities. Three key questions drive this research. First, why are some types of concepts more difficult to learn than others? Secondly, can the subjective degree of learning difficulty of different types of concepts be reliably predicted? Thirdly, can context effects in similarity assessment, perception, and choice behavior be accurately accounted for by structure detection? In my work, I argue that the key to answering these questions lies on the ability of organisms to detect invariance structure patterns in categorical stimuli.

Toward this end, I have created several mathematical frameworks and formal models for characterizing the way that observers learn concepts and assess similarities from categorical stimuli. Historical and new empirical evidence suggests that these structural models, algebraic, analytic, and non-probabilistic in nature (and hence, much like the models encountered in classical physics), are more robust and cognitively plausible predictors of the degree of concept learning difficulty experienced by humans than the well-known alternatives. Notably, all of this is often accomplished without the need for free parameters. This research has been articulated in several papers (Vigo, 2006, 2008, 2009, 2011, 2012, 2013) and in a book entitled "Mathematical Principles of Human Conceptual Behavior: The Structural Nature of Conceptual Representation and Processing" (Vigo, 2014). (Book Information Here)

The SCOPE LAB (Structure, Concepts, and Perception Laboratory) at Ohio University seeks to extend the above research empirically and theoretically. For example, in the SCOPE Lab we conduct empirical and theoretical research on human concept learning and categorization behavior using eye tracking technology. More specifically, we use eye tracking techniques to explore correlations between saccades and the concept learning behavior predicted by a variety of models, including models from my generalized invariance structure theory (GIST; Vigo, 2013, 2014, 2015) and my representational information theory (RIT; 2011, 2012, 2014).

Other research activities in the SCOPE Lab include empirical and theoretical research on decision making behavior as a function of similarity assessment, dissimilarity assessment, and categorization. Also, we are interested in researching how humans judge similarity and dissimilarity between structural or configural stimuli such as human faces. In related work, I introduced a mathematical model of similarity that predicts the empirical similarity ordering of a key class of configural stimuli associated with deductive inference (Vigo, 2009a, 2009b). Last, but not least, the SCOPE Lab conducts empirical and theoretical research on problem solving behavior in mathematical domains such as geometry, algebra, and physics, and on the nature of aesthetic judgments. For more information on our research, visit the SCOPE Lab website here.



Ph.D., Indiana University at Bloomington
M.A., University of California at Irvine
M.A., University of Southern California/UCLA
B.A., University of California at Los Angeles

Selected Publications

Vigo, R., Doan, C. (2015). The Structure of Choice. Cognitive Systems Research, in press.

Vigo, R., Evans, S., Owens, J. (2014). Categorization Behavior in Adults, Adolescents, and ADHD-Adolescents: A Comparative Investigation. Quarterly Journal of Experimental PsychologyJun;68(6).

Vigo, R. (2014). Mathematical Principles of Human Conceptual Behavior: The Structural Nature of Conceptual Representation and Processing (Oct, 2014), Scientific Psychology Series, Routledge. (Book Information Here)

Vigo, R. (2013). The GIST (Generalized Invariance Structure Theory) of Concepts, Cognition, 129(1), 138-162.

Vigo, R., Zeigler, D., Halsey, P. (2013). Gaze and Informativeness During Category Learning: Evidence for an Inverse Relation. Visual Cognition, 1-31.

Vigo, R., Basawaraj (2013). Will the most informative object stand? Determining the impact of structural context on informativeness judgments. Journal of Cognitive Psychology, 1-19.

Vigo, R. (2012). Complexity over Uncertainty in Generalized Representational Information Theory (GRIT): A Structure-Sensitive General Theory of Information. Information, 4, 1-30.

Vigo, R. (2011). Representational information: a new general notion and measure of information. Information Sciences, 181, 4847-4859.

Vigo, R. (2011). Towards a Law of Invariance in Human Concept Learning, L. Carlson, C. Hölscher, T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the  Cognitive Science Society, Austin, TX: Cognitive Science Society, 2580-2585.

Vigo, R., (2010). A Dialogue on Concepts. Think, Volume 9, Issue 24, March 2010, pp 109-120.

Vigo, R. (2009). Categorical Invariance and Structural Complexity in Human Concept Learning. Journal of Mathematical Psychology, 53, 203-221.

Vigo, R. (2009). Modal Similarity. Journal of Experimental and Theoretical Artificial Intelligence, 21(3), 181-196.

Vigo, R., Allen, C., (2009). How to reason without words: inference as categorization. Cognitive Processing, 10(1), 51-88.

Vigo, R. (2006). A Note on the Complexity of Boolean Concepts. Journal of Mathematical Psychology,  50, 501-510.


Recent Grants

Courses Taught

Mathematical Modeling
Multivariate Statistics
Cognitive Processes

Graduate Students

  • Mikayla Barcus
  • Charles Doan
  • Phillip Andrew Halsey
  • Li Zhao
  • Derek Ziegler
  • Bassarawaj
  • Jinling Zhao
  • Sunil Carspecken